Boyang Huang

Contact Information	University of California San Diego Department of Computer Science and Engineering	(734)-881-5374 boyangh@ucsd.edu https://boyang-huang.github.io					
Research Interests	Theoretical computer science and mathematics, specifically computational complexity theory and the design and analysis of algorithms.						
Education	University of California San Diego (UCSD) M.S. in Computer Science. GPA: 4.0/4.0.	September 2023 - Present					
	University of Michigan Ann Arbor (UM) B.S. in Computer Science and in Mathematics (with	September 2019 - April 2023 Highest Honors). GPA: $4.0/4.0$.					
PUBLICATIONS	The Computational Complexity of Factored Gr Impagliazzo, Stanley Woo, and Christopher Ye. 16th Innovations in Theoretical Computer Science Co arXiv:2407.19102 (2024)	raphs , with Shreya Gupta, Russell					
Preprints	The Greedy Coin Change Problem, with Shreya arXiv:2411.18137 (2024)	a Gupta and Russell Impagliazzo.					
Research Experience	 Demystifying the Hardness of Attention, with Professor Barna Saha. Studied the computational complexity of the atta architectures based on input sequence length n and Proposed sub-quadratic approximation algorithms Established (conditional) quadratic lower bounds ductions for larger values of d (Ω(2^{log* n})). The Greedy Coin Change Problem, with Professor Russell Impagliazzo. Defined a decision version of the greedy coin change tional complexity of simulating the greedy strategy 	UCSD August 2024 - Present ention mechanism in transformer d model dimension d . when d is small $(O(1))$. via fine-grained subquadratic re- UCSD September 2024 - Present ge problem to study the computa- y on the coin change problem.					
	 Proved that the problem is P-complete under log-s Explored succinct representations for the input coil 	space reductions. In denomination values.					
	 The Computational Complexity of Factored G with Professor Russell Impagliazzo. Initiated the study of the computational complexity fined as graphs given as formulas that combine small Established various (parameterized) complexity redefined on factored graph inputs. 	Graphs, UCSD October 2023 - September 2024 y of <i>factored graphs</i> , which are de- ller graphs using graph operations. esults for natural graph problems					
Research Experience outside of Theory	 Digital Cell Image Analysis Pipeline for Nuclei with Professor Wei Lu. Applied various deep learning models for the componentation, focusing on weakly supervised learning challenges of small, real-world datasets in medical 	ei Segmentation, UM May 2022 - August 2022 buter vision task of cell image seg- ing techniques and addressing the image analysis.					

	Machine Learning in Cardiovascular Medicine,UMwith Professor Mohammed Saeed.September 2020 - April 2021• Implemented Fully Convolution Network and Support Vector Machine with wavelet transform preprocessing to detect atrial fibrillation in ECG signals.Presented this work at the 2021 UROP Spring Research Symposium.					
Honors and Awards	Outstanding Achievement in Math Mathematics Merit Scholarship Evelyn O. Bychinsky Award Sumner B. Myers Award in Analys EECS Scholar James B. Angell Scholar University Honors	ematics Awa	urd 20 20 20 20 20 20 20 20	23 22 22 22 22 21-2024 19-2023	University of Michigan University of Michigan University of Michigan University of Michigan University of Michigan University of Michigan University of Michigan	
Talks	The Computational Complexity of Factored Graphs . Advised by Professor Russell Impagliazzo. Presentation, ITCS 2025. Columbia University, Jan 2025, to appear. Poster, EnCORE Industry Day. UC San Diego, Sep 2024.					
Coursework at UCSD	 Quantum Complexity Theory Advanced Algorithms Lattice Algorithms and Applica 	tions	 Modern Cryptography Algorithm Design and Analysis Principles of AI 			
Coursework at UM	 * indicates graduate level coursework Computer Science Intro. to Algorithms Intro. to Machine Learning Intro. to Artificial Intelligence Computer Vision Web Systems Mathematics Analysis II (Real)* Analysis I (Complex)* Honors Algebra II (Ring/Galois Theory) Honors Intro. to Real Analysis 		 Foundations of Computer Science Intro. to Distributed Systems Intro. to Operating Systems Intro. to Computer Organization Intro. to Computer Security Discrete State Stochastic Processes* Probability Theory* Honors Multivariable Analysis II Honors Multivariable Analysis I Linear Algebra 			
Teaching Experience	CSE 101 Design and Analysis of A CSE 202 Algorithm Design and An CSE 105 Theory of Computation MATH 396 Honors Multivariable A MATH 395 Honors Multivariable A MATH 297 Honors Intro. to Real MATH 412 Intro. to Abstract Alg MATH 217 Linear Algebra	lgorithms nalysis Analysis II Analysis I Analysis ebra	TA TA TA TA TA TA TA Tutor	Winter 2 Fall 2024 Spring 2 Winter 2 Fall 2022 Winter 2 Fall 2022 Fall 2020	2025 4 2024, Summer 2024 2023 2 2022 1 0, Winter 2021, Fall 2021	UCSD UCSD UM UM UM UM UM UM
Relevant Skills	Languages: Programming Languages:	Mandarin (native), English (fluent). I ^A T _E X, C++, C, Python, Go Lang, JavaScript, SQL, R, Java, MATLAB, HTML.				